The Locally-Specific Impacts of Alcohol Outlet Density in the North Island, New Zealand

Michael P. Cameron

University of Waikato

Acknowledgements

- Co-authors: William Cochrane (University of Waikato), Craig Gordon (HPA), Michael Livingston (University of NSW)
- Commissioned and funded by: HPA (originally ALAC)
- Research Advisory Group: Mariska Wouters, Murray Clearwater, Eva McLaren and Giselle Baretta
- Luke Smith, Lhani Voyle, Omoniyi Alimi, Luke Holland, Emma Coker, William Mangos, Andrew Gentle, Luana Dow, Bob Stewardson, Ashleigh Cox and Emily Geck for their help with geo-coding and verification of the spatial data, and Francisca Simone for timely Geographic Information Systems (GIS) assistance in analysing and mapping the data

Background

- The Sale and Supply of Alcohol Act 2012 gives local bodies the opportunity to develop Local Alcohol Plans
- More information on the locally-specific impacts of liquor outlets is needed
- This research goes some way towards addressing that need
- It follows earlier work conducted by Cameron et al. in Manukau City

The existing evidence base

- Inconsistent associations between outlet density and alcohol-related effect
 - 'Availability theory', on which most research is based, is contested because of the inconsistent evidence
 - Proximity and amenity effects may be a better characterisation
- Generally, outlet density is positively associated with alcohol-related harms (violent and other crime, motor vehicle accidents, hospitalisations, etc.), BUT
 - Varies with type of outcome, outlet type and context
- Growing body of NZ research
 - Similar to general findings
 - Social deprivation is important

The North Island outlet density project

- Commissioned by HPA (originally ALAC) in March 2012
- Aims to extend the previous research on relationships between outlet density and police events and motor vehicle accidents conducted in Manukau City
 - Spatially: The whole of the North Island is included
 - Temporally: Annual average effects over the period 2006-2011 are considered
- Makes use of a relatively new spatial estimation technique, geographically weighted regression (GWR)
 - Allows the relationship between outlet density (by type) and dependent variables to vary spatially
 - Allows locally-specific relationships to be estimated

Data

- Licensing data 2006-2011 for the whole of the North Island (from Ministry of Justice)
 - Geo-coded to CAU
 - Classified by type:
 - Licensed clubs
 - 2. Bars and nightclubs
 - 3. Other on-licence
 - 4. Supermarkets and grocery stores
 - 5. Other off-licence
- Converted to outlet density (number of outlets per 10,000 usually resident population) for each CAU

Data

- Police incidents (from NZ Police CARD database), separated into seven categories:
 - Anti-social behaviour
 - Dishonesty
 - Drug and alcohol
 - Property abuse
 - Property damage
 - Sexual
 - Violence
- Motor vehicle crashes (from the NZTA CAS database)
- Converted to density (number of events per 10,000 usually resident population) for each CAU

Data

- Two control variables:
 - Population density (persons per sq kilometre) per CAU
 - New Zealand Deprivation Index for each CAU

- Some adjustments were made to the CAU map, to ensure adequate population size for calculating densities
 - 132 CAUs amalgamated (small population size)
 - 12 excluded (marinas, ports, harbours, etc.)
 - Final spatial model includes 1172 CAUs (including amalgamations)

Methods

- Geographically weighted regression
 - Uses a distance-weighted sub-sample of observations to produce an estimate for each target CAU
 - The sub-sample we employed was the 30 nearest neighbours
 - Each neighbour weighted by distance to target CAU
 - Balancing observed 'local' differences, estimate precision and weak data

Two outputs

- 1. A global model (based on OLS) which summarises the 'average effect', but doesn't take account of any locally-specific effects
- 2. A locally-specific model (GWR) where the coefficient estimates vary spatially, suitable for mapping
- All coefficients can be interpreted as marginal effects, i.e. the additional number of events associated with one additional outlet of the given type

Results - Global Model

	1. Antisocial behaviour	2. Dishonesty offences	3. Drug and alcohol offences	4. Property abuses
Club density	3.197***	2.183**	0.026	0.672***
Bar and nightclub density	14.73***	13.43***	1.335***	2.395***
Other on-licence density	3.357***	4.324***	0.0004	0.779***
Supermarket and grocery store density	5.710***	9.816***	-0.170*	2.536***
Other off-licence density	-7.817***	6.994***	-0.040	-1.610***
NZ Deprivation Index	1.030***	0.642***	0.035***	0.250***
Population density	2.175***	4.655***	0.109***	0.076
Global Adjusted R ²	0.7927	0.6331	0.7133	0.6926
GWR Adjusted R ²	0.9455	0.8953	0.8806	0.9343

^{*} Significant at 10%

^{**} Significant at 5%

^{***}Significant at 1%

Results - Global Model

	5. Property damage	6. Sexual offences	7. Violent offences	8. Motor vehicle accidents
Club density	1.267***	-0.031	0.853***	0.129
Bar and nightclub density	2.871***	0.321***	5.311***	0.511***
Other on-licence density	0.666***	0.004	0.557***	0.266***
Supermarket and grocery store density	3.698***	0.270***	2.901***	-1.124***
Other off-licence density	-0.816***	0.008	-0.758*	0.460***
NZ Deprivation Index	0.268***	0.015***	0.539***	-0.023**
Population density	0.308*	0.097***	0.482**	-0.781***
Global Adjusted R ²	0.6496	0.5199	0.7335	0.3412
GWR Adjusted R ²	0.8923	0.7893	0.9270	0.5040

^{*} Significant at 10%

^{**} Significant at 5%

^{***}Significant at 1%

Results – Spatial variability in effects

Bar and night club density vs. violent offences

Bar and night club density vs. violent offences

Other off-licence density vs. violent offences

Other off-licence density vs. violent offences

Licensed club density vs. motor vehicle accidents

Licensed club density vs. motor vehicle accidents

Conclusions

- Different outlet types appear to have different effects
 - May be related to amenity effects
 - Diffusion bias
- Global models may mask substantial 'local' differences
- Some areas show no statistically significant associations
- The degree of observed spatial variation provides support for local alcohol policies

Further thoughts

- Does not show cause
- Quiet on interpretation i.e. What is behind the results?
 Why? Local knowledge is important
- Uses average effects doesn't consider changes over time
- GWR model is quite sensitive to weighting decision, inclusion/exclusion of variables, and the presence of outliers
- What about the South Island?

WWW.WAIKATO.AC.NZ | 0800 WAIKATO

